Truncation of peptide deformylase reduces the growth rate and stabilizes solvent production in Clostridium beijerinckii NCIMB 8052.
نویسندگان
چکیده
The wild-type strain of Clostridium beijerinckii NCIMB 8052 tends to degenerate (i.e., lose the ability to form solvents) after prolonged periods of laboratory culture. Several Tn1545 mutants of this organism showing enhanced long-term stability of solvent production were isolated. Four of them harbor identical insertions within the fms (def) gene, which encodes peptide deformylase (PDF). The C. beijerinckii fms gene product contains four diagnostic residues involved in the Zn2+ coordination and catalysis found in all PDFs, but it is unusually small, because it lacks the dispensable disordered C-terminal domain. Unlike previously characterized PDFs from Escherichia coli and Thermus thermophilus, the C. beijerinckii PDF can apparently tolerate N-terminal truncation. The Tn1545 insertion in the mutants is at a site corresponding to residue 15 of the predicted gene product. This probably removes 23 N-terminal residues from PDF, leaving a 116-residue protein. The mutant PDF retains at least partial function, and it complements an fms(Ts) strain of E. coli. Northern hybridizations indicate that the mutant gene is actively transcribed in C. beijerinckii. This can only occur from a previously unsuspected, outwardly directed promoter located close to the right end of Tn1545. The Tn1545 insertion in fms causes a reduction in the growth rate of C. beijerinckii, and, associated with this, the bacteria display an enhanced stability of solvent production. The latter phenotype can be mimicked in the wild type by reducing the growth rate. Therefore, the observed amelioration of degeneration in the mutants is probably due to their reduced growth rates.
منابع مشابه
Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration.
The addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production and also increase glucose utilization by Clostridium beijerinckii NCIMB 8052. RNA and enzyme analyses indicated that coenzyme A (CoA) transferase was highly expressed and has higher activity in C. beijerinckii NCIMB 8052 grown in MP2 medium containing added sodium acetate than ...
متن کاملImpact of syringaldehyde on the growth of Clostridium beijerinckii NCIMB 8052 and butanol production
While lignocellulosic biomass excels as a cheap, renewable resource for biofuel production, it does present some challenges such as generation of microbial inhibitory compounds. The mode of selective inhibition of acetone–butanol–ethanol (ABE) production (as opposed to cell growth) by syringaldehyde on Clostridium beijerinckii NCIMB 8052 was examined. C. beijerinckii 8052 grown in syringaldehyd...
متن کاملTranscriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis.
Clostridium beijerinckii is an anaerobic bacterium used for the fermentative production of acetone and butanol. The recent availability of genomic sequence information for C. beijerinckii NCIMB 8052 has allowed for an examination of gene expression during the shift from acidogenesis to solventogenesis over the time course of a batch fermentation using a ca. 500-gene set DNA microarray. The micr...
متن کاملComplete Genome Sequence of Solvent-Tolerant Clostridium beijerinckii Strain SA-1
We report the complete genome sequence of Clostridium beijerinckii SA-1, derived by directed evolution from C. beijerinckii NCIMB 8052, selecting for enhanced solvent tolerance. This sequence allows for accurate placement of SA-1 as C. beijerinckii, permits functional analyses of mutant phenotypes, and suggests methods for distinguishing SA-1 from its parent.
متن کاملEnhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304
BACKGROUND Phenolic compounds generated in hydrolysis of lignocellulosic materials are major limiting factors for biological production of solvents by Clostridia, but it lacks the attention on the study of adaptation or resistance mechanisms in response to phenolic compounds. RESULTS Gene Cbei_3304, encoding a hypothetical membrane transport protein, was analyzed by bioinformatic method. Afte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 5 شماره
صفحات -
تاریخ انتشار 1998